Biocompatible ι-carrageenan-γ-maghemite nanocomposite for biomedical applications – synthesis, characterization and in vitro anticancer efficacy
نویسندگان
چکیده
BACKGROUND Carrageenans are naturally occurring hydrophilic, polyanionic polysaccharide bioploymers with wide application in pharmaceutical industries for controlled drug delivery. Magnetic nanoparticles with their exceptional properties enable them to be an ideal candidate for the production of functional nanostructures, thus facilitating them for biomedical applications. The development of novel nanocomposite by coupling the synergistic effects of the sulfated polysaccharide (iota carrageenan) and a magnetic nanoparticle (maghemite) may offer new interesting applications in drug delivery and cancer therapy. The nanocomposite was characterized by ultraviolet-visible spectroscopy, high resolution scanning electron microscopy, dynamic light scattering analysis, Fourier transform infrared spectroscopy and powder XRD to highlight the possible interaction between the two components. Biocompatibility and the anticancer efficacy of the nanocomposite were assayed and analysed in vitro. RESULTS Results suggested that iota carrageenans have electrostatically entrapped the maghemite nanoparticles in their sulfate groups. Biocompatibility of the nanocomposite (at different concentrations) against normal cell lines (HEK-293 and L6) was confirmed by MTT assay. Hoechst 33342 and 7-AAD staining studies under fluorescent microscopy revealed that the nanocomposite is able to induce appoptosis as the mode of cell death in human colon cancer cell line (HCT116). Cell apoptosis here is induced by following the ROS-mediated mitochondrial pathway, combined with downregulation of the expression levels of mRNA of XIAP and PARP-1 and upregulation of caspase3, Bcl-2 and Bcl-xL. CONCLUSIONS This novel nanocomposite is biocompatible with potential properties to serve in magnet aided targeted drug delivery and cancer therapy.
منابع مشابه
Synthesis and Characterization of γ-MnO2-AgA Zeolite Nanocomposite and its Application for the Removal of Radioactive Strontium-90 (90Sr)
In this scientific research, for the first time, the removal of radioactive strontium-90 (90Sr) by γ-MnO2-AgA zeolite as a novel nanocomposite adsorbent was accomplished under different conditions such as pH, temperature, adsorbent amount and the contact time that are examined from drinking water of Ramsar city and monitored via Ultra Low-Level Liquid Scintillation Counting (LSC) technique. Pri...
متن کاملSynthesis and Characterization of γ-MnO2-AgA Zeolite Nanocomposite and its Application for the Removal of Radioactive Strontium-90 (90Sr)
In this scientific research, for the first time, the removal of radioactive strontium-90 (90Sr) by γ-MnO2-AgA zeolite as a novel nanocomposite adsorbent was accomplished under different conditions such as pH, temperature, adsorbent amount and the contact time that are examined from drinking water of Ramsar city and monitored via Ultra Low-Level Liquid Scintillation Counting (LSC) technique. Pri...
متن کاملSynthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications
Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...
متن کاملPreparation and Characterization of Double Shell Fe3O4 Cluster@Nonporous SiO2@Mesoporous SiO2 Nanocomposite Spheres and Investigation of their In Vitro Biocompatibility
Background: Multifunctional core-shell magnetic nanocomposite particles with tunable characteristics have been paid much attention for biomedical applications in recent years. A rational design and suitable preparation method must be employed to be able to exploit attractive properties of magnetic nanocomposite particles. Objectives: Herein, we report on a simple approach for the synthesis of m...
متن کاملSynthesis and characterization of magnetic γ- Fe2O3 nanoparticles: Thermal cooling enhancement in a sinusoidal headbox
Nano-size maghemite (γ-Fe2O3) particles were prepared in one step using ultrasound radiation. The obtained nanoparticles were characterized by SEM, TEM , XRD, FTIR, and VSM. The results revealed that the synthesized nanoparticles were spherical, mono-dispersed and uniform. Furthermore, the crystalline structure of nanoparticles endorsed by X-ray diffraction study. The FTIR spectra have provided...
متن کامل